Bologna, Royal Hotel Carlton May 8-9, 2023

President: Pier Luigi Zinzani

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Dipartimento di Scienze mediche e chirurgiche

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Bologna

Disclosures of Dr. Michael Wang

Research Support	Consultancy	Honoraria
Acerta Pharma, AstraZeneca, BeiGene, BioInvent, Celgene, Genmab, Genentech, Innocare, Janssen, Juno Therapeutics, Kite Pharma, Lilly, Loxo Oncology, Molecular Templates, Oncternal, Pharmacyclics, VelosBio, Vincerx	AbbVie, Acerta Pharma, ADC Therapeutics America, Amphista Therapeutics Limited, AstraZeneca, Be Biopharma, BeiGene, BioInvent, Deciphera, DTRM Biopharma (Cayman) Limited, Genentech, InnoCare, Janssen, Kite Pharma, Leukemia & Lymphoma Society, Lilly, Merck, Miltenyi Biomedicine, Milken Institute, Oncternal, Parexel, Pepromene Bio, Pharmacyclics, VelosBio	AbbVie, Acerta Pharma, AstraZeneca, Bantam Pharmaceutical, BeiGene, BioInvent, Bristol Myers Squibb, CAHON, Dava Oncology, Eastern Virginia Medical School, Genmab, i3Health, IDEOlogy Health, Janssen, Kite Pharma, Leukemia & Lymphoma Society, Medscape, Meeting Minds Experts, MD Education , MJH Life Sciences, Merck, Moffit Cancer Center, Nurix, Oncology Specialty Group, OncLive, Pharmacyclics, Physicians Education Resources (PER), Practice Point Communications (PPC), Scripps, Studio ER Congressi, WebMD

Bologna, Royal Hotel Carlton, May 8-9, 2023

Aaaressive

Workshop

Lvmphoma

Michael L. Wang, MD¹; Javier Munoz, MD, MS, FACP²; Andre Goy, MD³; Frederick L. Locke, MD⁴;
Caron A. Jacobson, MD, MMSc⁵; Brian T. Hill, MD, PhD⁶; John M. Timmerman, MD⁷; Houston Holmes, MD, MBA, FACP⁸; Ian W. Flinn, MD, PhD⁹; David B. Miklos, MD, PhD¹⁰; John M. Pagel, MD, PhD, DSc¹¹; Marie José Kersten, MD, PhD¹²; Roch Houot, MD, PhD¹³; Amer Beitinjaneh, MD¹⁴; Weimin Peng, PhD¹⁵; Xiang Fang, PhD¹⁵; Rhine R. Shen, PhD¹⁵; Rubina Siddiqi, PhD¹⁵; Ioana Kloos, MD¹⁵; Patrick M. Reagan, MD¹⁶

¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Banner MD Anderson Cancer Center, Gilbert, AZ, USA; ³John Theurer Cancer Center, Hackensack University, Hackensack, NJ, USA; ⁴Moffitt Cancer Center, Tampa, FL, USA; ⁵Dana-Farber Cancer Institute, Boston, MA, USA; ⁶Cleveland Clinic Foundation, Cleveland, OH, USA; ⁷David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ⁸Texas Oncology, Dallas, TX, USA; ⁹Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA; ¹⁰Stanford University School of Medicine, Stanford, CA, USA; ¹¹Swedish Cancer Institute, Seattle, WA, USA; ¹²Amsterdam UMC, University of Amsterdam, Amsterdam, Cancer Center Amsterdam, The Netherlands, on behalf of HOVON/LLPC; ¹³CHU Rennes, Université Rennes, INSERM & EFS, Rennes, France; ¹⁴University of Miami, Miami, FL, USA; ¹⁵Kite, a Gilead Company, Santa Monica, CA; and ¹⁶University of Rochester Medical Center, Rochester, NY, USA

Disclosures

Michael L. Wang: honoraria from Janssen, Acerta Pharma, OMI, Physicians' Education Resources, Dava Oncology, CAHON, Hebei Cancer Prevention Federation, Clinical Care Options, Mumbai Hematology Group, Anticancer Association, Newbridge Pharmaceuticals; consultancy or advisory role for InnoCare, Loxo Oncology, Juno, Oncternal, CStone, AstraZeneca, Janssen, VelosBio, Pharmacyclics, Genentech, Bayer Healthcare; research funding from Kite, Pharmacyclics, Janssen, AstraZeneca, Celgene, Loxo Oncology, Juno, BioInvent, VelosBio, Acerta Pharma, Oncternal, Verastem, Molecular Templates, Lilly, InnoCare.

Objective Response Rate (ORR) in All Treated Patients (N=68)

- After a median follow-up of 35.6 months (range, 25.9-56.3), the ORR (CR + partial response [PR]) was 91% (95% CI, 81.8-96.7), with a 68% CR rate (95% CI, 55.2-78.5) and a median DOR of 28.2 months (95% CI, 13.5-47.1)
- In the ITT population, ORR was 84% (95% CI, 73.4-91.3), with a 62% CR rate (95% CI, 50.1-73.2)

With 3-years of follow-up, these data demonstrate that a single infusion of KTE-X19 resulted in high rates of durable responses in R/R MCL.

Assessed by an IRRC according to the Lugano Classification.^{1 a} Since the previous report,² IRRC review determined that 1 patient who was previously reported as best response of PR had no disease at baseline; this patient is reported as PD in the current report. CR, complete response; DOR, duration of remission; IRRC, Independent Radiology Review Committee; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease. 1. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068. 2. Wang M, et al. *Blood*. 2020;136(suppl 1):20-22.

Bologna, Royal Hotel Carlton, May 8-9, 2023

Overall Survival (OS) in All Treated Patients (N=68)

- The median progression-free survival (PFS) was 25.8 months, as shown in the full poster
- In the ITT population (data not shown), the median PFS was 24.0 months and the median OS was 47.4 months

Median OS among treated patients was 46.6 months and was not reached among those who achieved CR.

Median follow-up 35.6 months. CR, complete remission; mo, month; NE, not estimable; NR, no response; OS, overall survival; PFS, progression-frere survival.

Overall AEs and AEs Occurring Since the Primary Analysis Report

	All-Treated Patients (N=68)				
	Overall AEs Occurring Since AEs Occurring Since the Primary Analysis Report				port
	Infusion	Any Grade	Grade 3	Grade 4	Grade 5
AEs, n (%)					
Any	68 (100)	18 (26)	4 (6)	7 (10)	3 (4)
Any KTE-X19–related	66 (97)	9 (13)	2 (3)	6 (9)	0
Serious AEs, n (%)					
Any	48 (71)	8 (12)	4 (6)	0	3 (4)
Serious KTE-X19–related	37 (54)	2 (3)	2 (3)	0	0
CRS or neurologic events, n (%)	63 (93)	2 (3)	1 (1)	0	0
CRSª	62 (91)	0	0	0	0
Neurologic events	43 (63)	2 (3)	1 (1) ^b	0	0
Serious neurologic event	22 (32)	1 (1)	1 (1) ^b	0	0
Cytopenias, n (%)					
Thrombocytopenia	50 (74)	2 (3)	0	2 (3)	0
Neutropenia	59 (87)	8 (12)	1 (1)	7 (10)	0
Anemia	47 (69)	3 (4)	2 (3)	0	0
Infection, n (%)					
Any	36 (53)	7 (10)	3 (4)	0	1 (1)
Serious	21 (31)	4 (6)	3 (4)	0	1 (1)
COVID-19 associated viral	0	0	0	0	0
Non–COVID-19 associated viral	11 (16)	3 (4)	1 (1)	0	0
Hypogammaglobulinemia, n (%)	14 (21)	1 (1)	0	0	0
Tumor lysis syndrome. n (%)	1 (1)	0	0	0	0

Data cutoff for the primary analysis was July 19, 2019¹; data cutoff for the present analysis was July 24, 2021. Numbers (percentage) of patients with worst grade of AE are shown; AEs occurring after retreatment are not included. ^a CRS events were graded per revised Lee et al. 2014 grading system¹²; all other AEs were graded per Common Terminology Criteria for Adverse Events version 4.03. ^b This serious neurologic event of encephalopathy began on day 397; the event resolved on day 408 and was considered unrelated to KTE-X19. AE, adverse event; CRS, cytokine release syndrome; KTE-X19, brexucabtagene autoleucel. 1. Wang M, et al. N Engl J Med. 2020;382:1331-1342.

MRD Detection at 3 and 6 Months Predicts Relapse

DOR, PFS, and OS were not reached in patients with MRD-negativity at 6 months, suggesting MRD-negativity may predict for a longer response duration. However, sample size of this exploratory analysis was limited, further investigation is warranted.

Median follow-up 35.6 months.

AUC, area under the curve; CAR, chimeric antigen receptor; MRD, minimal residual disease; ROC, receiver operating characteristics.

Bologna, Royal Hotel Carlton, May 8-9, 2023

Comparison of Pharmacokinetics After Propensity Score Matching of Patients With and Without Prior Bendamustine Exposure

• An exploratory analysis using propensity score matching (1:1) found peak and area under the curve CAR T-cell levels were significantly lower in patients with prior bendamustine use within 6 months of CAR T-cell infusion compared to patients with no prior bendamustine use

Patients may benefit from longer time spans between prior bendamustine and cell therapy, though further analyses are warranted.

AUC, area under the curve; Benda, bendamustine; CAR, chimeric antigen receptor

Bologna, Royal Hotel Carlton, May 8-9, 2023

US Lymphoma CAR T Consortium Experience of Brexucabtagene Autoleucel for Relapsed or Refractory Mantle Cell Lymphoma in Standard-of-Care Practice

Background

Lymphoma

- Brexucabtagene autoleucel (brexu-cel) was approved by the US FDA for relapsed or refractory MCL based on the pivotal ZUMA-2 study.
- Brexu-cel demonstrated high response rates (ORR 91%, CR 68%) in ZUMA-2, and 3-year follow-up demonstrated durable responses, with a median PFS of 25.8 months and a median OS of 46.6 months.
- Patients treated in clinical trials often differ from those treated in standard-of-care practice.
- We report the pattern of use, safety, and efficacy of brexu-cel in standard-of-care practice among centers in the US Lymphoma CAR-T Consortium.

Key ZUMA-2 Eligibility Criteria

- 1-5 lines of prior therapy, must have included:
 - ✓ Anti-CD20
 - ✓ Anthracycline or bendamustine
 - Ibrutinib or acalabrutinib
- No CNS involvement
- ECOG PS<2
- Adequate blood counts
- Adequate hepatic and renal function, e.g., CrCl ≥60
- No significant comorbidities

ZUMA-2 Bridging Therapy

- Corticosteroid
- Ibrutinib
- Acalabrutinib

Methods

- Sixteen centers participated in this retrospective study.
- Patients who underwent leukapheresis by December 2021 with an intent to manufacture brexu-cel were included.
- Baseline clinical characteristics, bridging therapy, adverse events after brexu-cel infusion, and post-infusion outcome data were collected.
- Eligibility for ZUMA-2 was retrospectively determined based on characteristics at the time of leukapheresis.
- Duration of response, PFS, and OS were analyzed using the Kaplan-Meier method.

Case numbers by center

Brexu-Cel RWE: Patient characteristics

Variable	Number	Variable	Number
Age, median (range)	67 (34-89)	Prior therapies	
Sex, male	128 (76%)	Total lines, median (range)	3 (1-10)
ECOG PS ≥2	18 (11%)	Prior anthracycline or bendamustine	150 (89%)
Simplified MIPI		Prior bendamustine	85 (51%)
Intermediate risk (4-5)	87 (52%)	Prior cytarabine	88 (52%)
High risk (6-11)	26 (15%)	Prior AutoSCT	47 (28%)
Ki-67 ≥30%	118/152 (78%)	Prior rituximab maintenance	78 (46%)
Ki-67 ≥50%	86/152 (57%)	Prior BTKi	144 (86%)
Blastoid/pleomorphic	68 (40%)	BTKi-refractory n=128, BTKi-intolerant n=10	
TP53 mutation or deletion	61/126 (48%)	Prior lenalidomide	32 (19%)
Complex karyotype	31/111 (28%)	Prior venetoclax	54 (32%)
Stage III-IV	151 (90%)	POD24	87 (52%)
CNS involvement	16 (10%)	Disease status before CAR T	
Bone marrow involvement	65/118 (55%)	Relapsed after last line	94 (56%)
Bulky disease (≥10 cm)	24 (14%)	Refractory to last line	74 (44%)

Brexu-Cel RWE: ZUMA-2 ineligibility and bridging therapy

Reasons for ZUMA-2 ineligibility	Number (%)
Any reason	129 (77%)
ZUMA-2 ineligible solely due to being BTKi- and/or anthracycline-/bendamustine-naïve	26 (15%)
ZUMA-2 ineligible due to disease status (R/R after 5 lines of therapy, AlloSCT or anti-CD19 CAR cell therapy, CNS or cardiac involvement) or clinically significant comorbidities	103 (61%)
Top reasons	
Creatinine clearance <60 mL/min	33 (20%)
No prior BTKi	24 (14%)
Prior lines of therapy >5	19 (11%)
No prior anthracycline/bendamustine	18 (11%)
ECOG PS ≥2	18 (11%)
CNS involvement by lymphoma	16 (10%)
Significant cardiac disease <12 months	13 (8%)
Platelet <50,000/µL	11 (7%)
ANC <1000/μL	9 (5%)
Clinically significant pleural effusion	9 (5%)
Another active malignancy within 3 years	9 (5%)

Bridging therapy	Number
BTKi-based	30
Venetoclax ± CD20	8
BTKi + Venetoclax-based	16
(R-)Chemo ± Steroid	35
(R-)Chemo + Radiation ± Steroid	5
Lenalidomide-based	6
Radiation ± Steroid ± CD20	10
Steroid and/or steroid	4
Total	114 (68%)
Response to bridging therapy	
CR	5 (6%)
PR	26 (30%)
SD	25 (28%)
PD	32 (36%)
Not assessed/unknown	26

Brexu-Cel: AEs of interest

CRS and ICANS Incidences				
	CRS, n (%)	ICANS, n (%)	CRS in ZUMA-2 (%)	NE in ZUMA-2 (%)
Total	151 (90%)	103 (61%)	91%	63%
Maximum grade				
1-2	138 (82%)	49 (29%)	76%	32%
3-4	12 (7%)	54 (32%)	15%	31%
5	1 (1%)			
	Mana	gement of CRS and/or	ICANS	
Tocilizumab	129 (77%)		59%	26%
Tocilizumab doses, median (range)	2 (1-4)			
Steroid	116 (69%)		22%	38%
Anakinra	28 (17%)			
Siltuximab	5 (3%)			
Cytopenia and infe	ction	Day 30, n (%)	Dav	y 90, n (%)
Hemoglobin < 8 g/dL		13/164 (8%)	8/	(146 (5%)
Platelet < 50,000/µL		70/164 (43%)	16/	′146 (11%)
ANC < 1000/μL		54/164 (33%)	27/	′146 (18%)
ANC < 500/μL		23/164 (14%)	9/	′146 (6%)
Infections		Days 0-30:	Da	ays 31-90:

Brexu-Cel RWE: Response rate

Subgroup	ORR (95%	, CI)	CR rate (95% C	I)
All (n=168)	-+-	90 (84-94)	- +	82 (75-88)
Blastoid/pleomorphic	-			
No (n=100)	-+-	90 (82-95)	_ + _	82 (73-89)
Yes (n=68)	-+	90(80-96)	_ + _	82 (71-91)
TP53 aberration				
No (n=65)	-	91 (81-97)		88 (77-95)
Yes (n=61)		89 (78-95)		72 (59-83)
Complex karyotype				
No (n=80)		86 (77-93)	_ _	81 (71-89)
Yes (n=31)	• <u>i</u>	87 (70-96)	_	74 (55-88)
Ki67 proliferation index				
<30% (n=34)		91 (76-98)		91 (76-98)
30-49% (n=32)	+•	97 (84-100)		84 (67-95)
≥50% (n=86)		88 (80-94)	● ¦-	78 (68-86)
Simplified MIPI risk group				
Low risk (n=55)	+ +	95 (85-99)	⊹ ⊷	91 (80-97)
Intermediate risk (n=87)	-+-	90 (81-95)	+ _	82 (72-89)
High risk (n=26)	→ +	81 (61-93)	-	65 (44-83)
POD24				
No (n=81)		94 (86-98)	÷	89 (80-95)
Yes (n=87)		86 (77-93)	• -	76 (65-84)
CNS involvement				
No (n=152)	-	91 (85-95)	_ —	83 (76-89)
Yes (n=16)		81 (54-96)	•	75 (48-93)
BTKi history				
BTKi-naïve (n=24)	++	96 (79-100)	_	88 (68-97)
BTKi-exposed (n=144)	+	89 (83-94)	-+-	81 (74-87)
BTKi-refractory (n=128)	-+-	89 (82-94)	• <mark>-</mark> -	80 (73-87)
BTKi-intolerance (n=10)	→ +	80 (44-97)	•	80 (44-97)
BTKi-sensitive (n=6)		100 (54-100)	•	100 (54-100)
ZUMA-2 eligibility				
Eligible (n=39)	-	90 (76-97)	-	85 (69-94)
Ineligible (n=129)	-÷-	90 (83-95)		81 (74-88)
Ineligible due to BTKi- or anthracycline/bendamustine-naïve (n=26)		96 (80-100)	- _	96 (80-100)
Ineligible due to disease status or comorbidities (n=103)	-÷-	88 (81-94)		78 (68-85)
Bridging therapy		. ,		
No (n=54)		93 (82-98)	_ _	81 (69-91)
Yes (n=114)	-	89 (81-94)	_ + _	82 (74-89)
	i	. ,		. ,
0 10 20 30 40 50 60 7	0 80 90 100		0 10 20 30 40 50 60 70 80 90 100	

CTLs after relapse are less cytotoxic and overexpress the immune checkpoint molecule TIGIT

Aggressive Lymphoma Workshop

Bologna, Royal Hotel Carlton, May 8-9, 2023

President: Pier Luigi Zinzani

Brexu-Cel RWE: PFS by subgroup

CTLs after relapse are less cytotoxic and overexpress the immune checkpoint molecule TIGIT

Aggressive Lymphoma Workshop

Bologna, Royal Hotel Carlton, May 8-9, 2023

President: Pier Luigi Zinzani

Brexu-Cel RWE: PFS by subgroup

record and the second checkpoint molecule TIGIT

CTLS

Bologna, Royal Hotel Carlton, May 8-9, 2023

President: Pier Luigi Zinzani

Brexu-Cel RWE: Feasibility in patients with CNS involvement

CILs after relapse are less cytotoxic and overexpress the immune checkpoint molecule TIGIT

Aggressive Lymphoma Workshop

Bologna, Royal Hotel Carlton, May 8-9, 2023

President: Pier Luigi Zinzani

Brexu-Cel RWE: Impact of prior BTKi

CILs after relapse are less cytotoxic and overexpress the immune checkpoint molecule TIGIT

Aggressive Lymphoma Workshop

Bologna, Royal Hotel Carlton, May 8-9, 2023

Brexu-Cel RWE: Impact of prior bendamustine exposure

Subgroup	ORR (95% CI)
No prior bendamustine (n=86)	¦_ ←	91 (82-96)
Prior bendamustine (n=103)	_	71 (61-79)
Bendamustine within 6 months (n=32) -	- -	53 (35-71)
Bendamustine within 6-24 months (n=28)	• <u>+</u>	75 (55-89)
Bendamustine >24 months before (n=43)	_	81 (67-92)
0 10 20 30 40	50 60 70 80 90100	

Subgroup	CR rate (95% CI)	
No prior bendamustine (n=86)		84 (74-91)
Prior bendamustine (n=103)	_	64 (54-73)
Bendamustine within 6 months (n=32)	- -	47 (29-65)
Bendamustine within 6-24 months (n=28)	•	64 (44-81)
Bendamustine >24 months before (n=43)	_	77 (61-88)
	· · · · · · · · · · · · · · · · · · ·	
0 10 20 30 4	ł0 50 60 70 80 90100	

CILs after relapse are less cytotoxic and overexpress the immune checkpoint molecule TIGIT

Aggressive Lymphoma Workshop

Bologna, Royal Hotel Carlton, May 8-9, 2023

Summary

- Real-world data of brexu-cel in standard-of-care appear comparable to ZUMA-2 data, but long-term follow-up is needed.
- Disease intrinsic high-risk features may still be associated with inferior outcomes in the setting of CAR-T.
- Recent bendamustine exposure is associated with inferior outcomes of CAR-T.